

IMPRINT Workshop

IMPRINT Team

Mr. John Lockett jlockett@arl.army.mil 410-278-5875

Ms. Jody Wojciechowski jqw@arl.army.mil 410-278-8830

Ms. Celine Richer cricher@arl.army.mil 410-278-5883

Ms. Charneta Samms csamms@arl.army.mil 410-278-5877

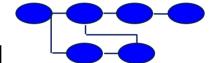
Ms. Diane Mitchell diane@arl.army.mil 410-278-5878

What is IMPRINT?

(Improved Performance Research Integration Tool)

- Army-developed soldier-system analysis tool
 - For predicting the effects of manpower, personnel, & training (MPT) on system effectiveness
 - Using or adapting best available methods
 - And best available data
 - For diverse users analysts & researchers
 - To support design, acquisition,& assessment today

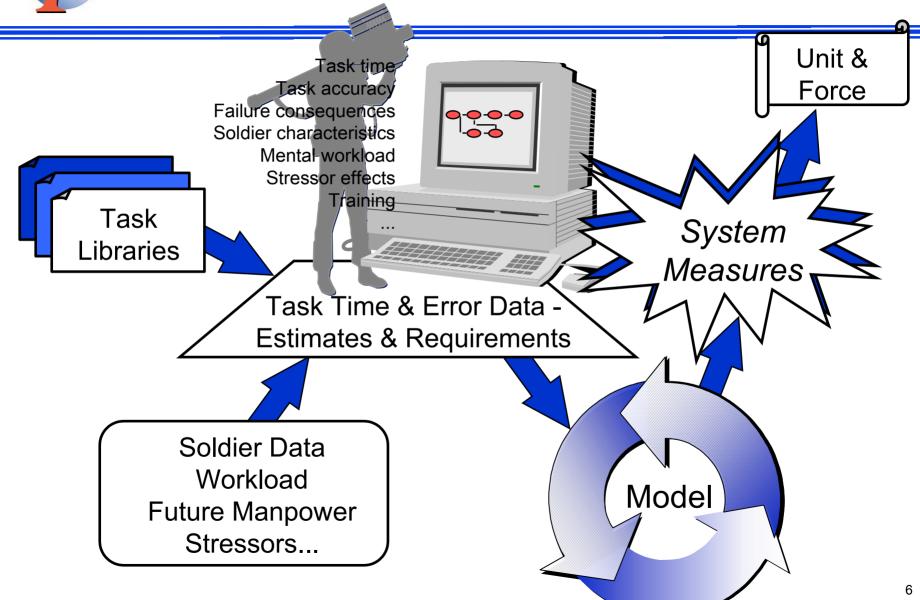
What Does IMPRINT Do?


It helps you...

- Set realistic system requirements
- Identify future manpower & personnel constraints
- Evaluate operator & crew workload
- Test alternate system-crew function allocations
- Assess required maintenance manhours
- Assess performance under extreme conditions
- Examine performance as a function of personnel characteristics, training frequency & recency
- etc.

How Does IMPRINT Do It?

- Stochastic task network modeling
 - Build your own mission model
 time, accuracy, task type, failure...



Parameterize maintenance model
 MTTR, MOUBF, combat damage, rounds fired...

- Workload modeling: VACP & Advanced
- Performance shaping functions & stressors
- Manpower projection
- Access data libraries: System & soldier data
- Force-level roll-up

IMPRINT Architecture

IMPRINT: Evolution & Revolution

1970's

Concept Paper ~Air Force~

MPT data provided - Paper & pencil -

Navy HARDMAN
(Hardware vs. Manpower)

1980's

Automated process

- Mini-computer -

Army HARDMAN II

MPT link to performance - PC -

Army HARDMAN III

1990's

Integrated analysis environment - Windows -

IMPRINT & WinCrew

2000+

Goal Oriented Behaviors & HLA Compliance

IMPRINT 6

IMPRINT Web Page

IMPRINT

Improved Performance Research Integration Tool

Version 6 now available!

Links to other sites:

ARL Home Page
Dept of the Army
WinCrew
Micro Saint
IPME
MATRIS

What is IMPRINT?

IMPRINT, developed by the Human Research & Engineering Directorate of the U.S. Army Research Laboratory, is a stochastic network modeling tool designed to help assess the interaction of soldier and system performance throughout the system lifecycle--from concept and design through field testing and system upgrades. IMPRINT is the integrated, Windows follow-on to the Hardware vs. Manpower III (HARDMAN III) suite of nine separate tools. HARDMAN

IMPRINT Verification, Validation & Accreditation

- Per AR 5-11, Army Model and Simulation Management Program
- Accreditation Board
 - ADCSPER, Chair & Members representing policy, users, testers, materiel developers, decision makers
- Effort completed 2QF 95 -
 - Define Mission, VACP, PTS
- IMPRINT is a tool for building models & includes embedded models!
- VV&A may be required for user-developed models

Extra Benefits of Doing V&V

- It's a great way to debug software
- It drives you to document model assumptions and limits

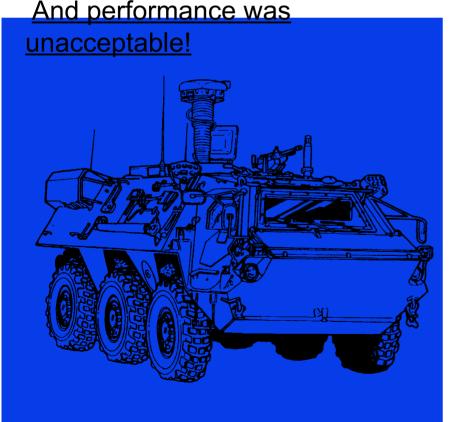
- It goes hand in hand with configuration management
- It helps build toward model standards, data sharing, etc.
- It's a way to reduce system risk
- If you do it right in the beginning, the "savings" are realized throughout the life-cycle
- It helps you develop rapport with the customer
- It helps build credibility for human performance modeling across the board!

Who Has IMPRINT?

- Army
- Navy
- Air Force
- Other Government
- Contractors
- University

- **◆** 77
- 13
- ****
- **♦** 2
- **\ 83**
- 12
- 195 and growing!

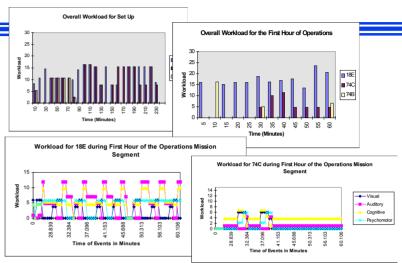
IMPRINT: Some Applications


- Fox NBC Reconnaissance Vehicle
- Special Forces Joint Base Station
- Crusader
- Job Consolidation for Army Ordnance MOSs
- Air Warrior

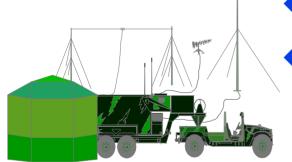
- → Reduced crew: workload & performance
- → Reduced crew: workload & skill
- → Crew size & CONOPS
- → Maintenance & availability; manning
- → Performance degradation

Fox NBC Reconnaissance Vehicle

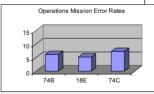
- Crew size reduced from 4 to 3
- Crew gender
- But design retained 4 stations

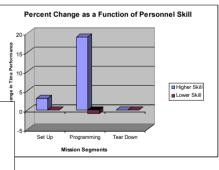


- Predicted performance improvement with simple design change
 - > Reduced workload
 - > Shortened mission duration
 - > Reduced soldier risk
- Re-designed system validated with minimum of testing
- Performance now acceptable!
- ◆ \$2-4M saved in program costs
- ◆ 25% soldier costs over 20 year lifecycle



Joint Base Station


- Special Forces Com Center
- Adding automation
- New job specialty (MOS) required?

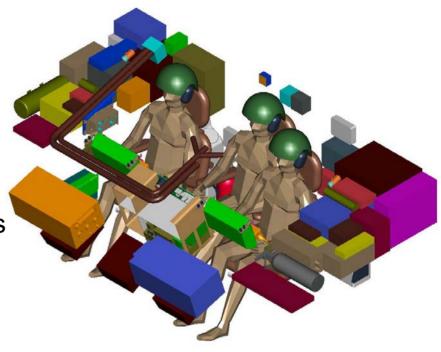


Model for crew workload

Check performance with different soldier skill levels

- Either different MOS or increase training
- ◆ Recommend different MOS for automation equipment

Crusader - Advanced Field Artillery System

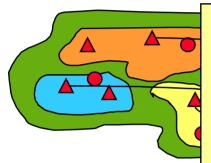

Early Modeling Predictions

- > 2-man crew: 6% more time, 80% more errors than 3-man crew
 - > Auto upload required
 - > 40% more errors after 48 hrs
- even with 3-man crew
- As design matures, re-examining issues
 - crew size
 - crew-equipment match
 - extended operations

Modeling Predictions for Current Design & Manning Decisions

> Even with updated design & scenario, 2-man crew: 8% more time

Day 1 Day 2 Day 3


Mission Capability

3-man crew 2-man crew 92% 55% 66% 2% 0%

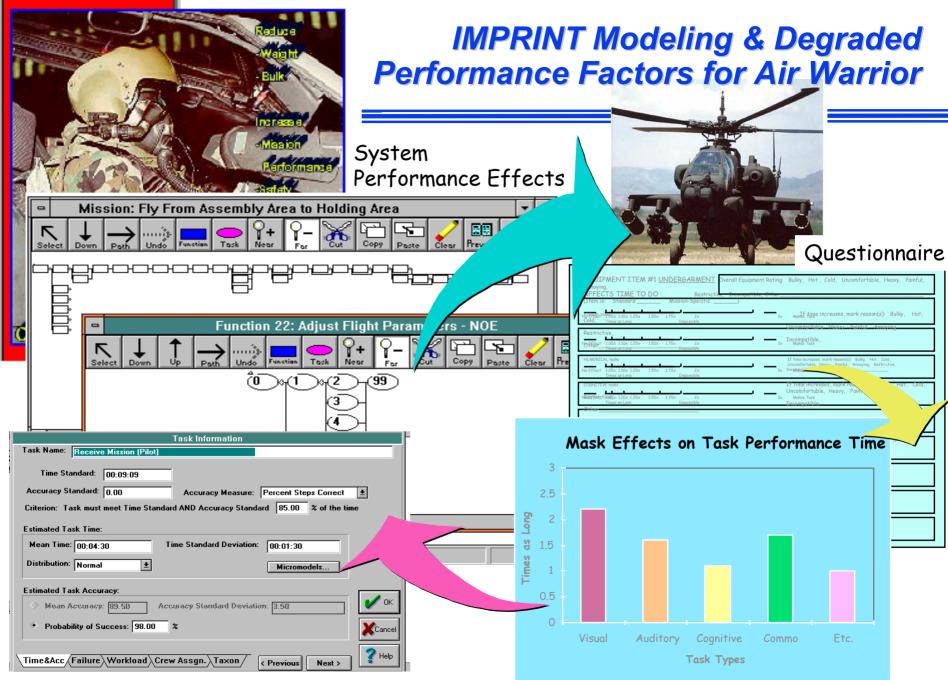
Modeling MOS Consolidation for Unit Design

From: Fixed maintenance levels
Rear maintenance...

IMPRINT Models Baseline, System Subsystem, & Multi-capable

To: Fix forward

Multi-capable mechanic


Maintenance enablers

Designed & evaluated early via task data; org structures; available manning, skills & abilities; system-mission priorities

USAOC&S Question:
Which consolidation concept
gives greatest OA with lowest cost?

iny of lence for

Army Afte

Model Input

Overview of Analysis Steps & IMPRINT Structure

Steps in an IMPRINT Analysis

- The same steps as in any good analysis
- Define objectives
- Define the budget
- Obsign the study
- "Collect" baseline input data
- 6 "Develop" the task data

- Build the model
- Debug the model
- "Run" the study
- "Collect" output data
- Analyze data
- Present the results!

Help in Defining the Objectives

Improved Performance Research Integration Tool (IMPRINT)

User's Guide

Version 6.0

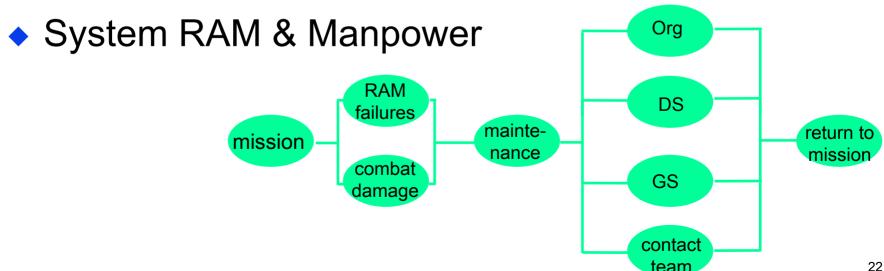
July 2002

US Army Research Laboratory Human Research and Engineering Directorate

DRAFT

Table of Contents

Chapter 1	- Getting Started in IMPRINT	1
Organizatio	n of this Document	1
Basic IMPR	INT Information	2
Basic Wind	ows Information	3
Chapter 2	- Installing IMPRINT	6
Chapter 3	- Using IMPRINT	8
Introduction		8
File Menu		8
New		8
Open		10
Save		11
Delete		12
Delete Ri	<u>esults</u>	12
Print Set	up	12
Import Ar	nalysis	12
Export Ar	nalysis	12
Import Ad	dvanced Mission	12
Export Ad	dvanced Mission	13
	SA File	
Duplicate		14
Notes	•	14
Define Men	u	15
		15
	nt	97
Soldi		



- Decompose Function & Task Networks
- Input Standards
- Input Task Time Mean & Standard Deviation
- Option: Input Task Accuracy
- Other Options: *
 - mental workload
 - Army Military Occupational Specialty assignment
 - taxon descriptors to enable stressors & performance shaping functions
- Execute Model & Task Data are Aggregated up to Function- & Mission-level Estimates

Define Equipment

- Identify Subsystems & Components w/ Associated Data
 - MOS, MTTR, MOUBF, tasks, maintenance level, etc.
- Build Scenario with Usage Rates
 - number of systems required for mission, shift length, rounds, miles, hours operational, etc.

- Army Military Occupational Specialties
- Identified by job title
- Linked to descriptive data
- Capability to project future manpower levels

- Army Force Structure information
- Army-wide roll-ups of single system
 & unit analyses

- Fuel & ammunition information
- Calculates number of transporters & the manpower required to support scenarios created under Define Equipment

- Workload options
- Personnel characteristics
- Training
- Environmental stressors
 - heat, cold, noise, protective clothing, hours since last sleep
- Accessing data in spreadsheet format

Loading the Software

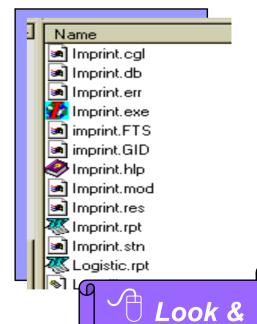
System Requirements

Desired

- Pentium
- 64 MB RAM Minimum
- 100 MB disk space
- VGA
- Windows 95/98 or Windows NT/2000
- Office for enhanced reporting & graphing

Installing IMPRINT

- Installs from CD to hard drive
- Installation procedure determine the correct DLLs to install
- Default directory: C:\IMPRINT


Starting & Stopping Your Analysis

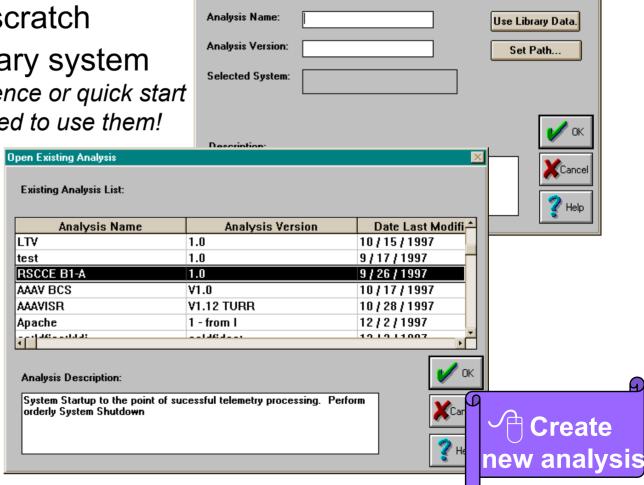
The IMPRINT Directory

- What's in it
 - Executable files, & DLL files
 - IMPRINT database files
 - » "library" files stuff that "comes with" IMPRINT
 - » "user" files your stuff
 - » "working" or "session" files for the open analysis
 - Report files linked to an analysis
 - Help files
 - Documentation & Readme
 - » Analysis Guide & User's Guide
- What isn't: Your analysis by name!

Open docs

What Your Analysis Looks Like

Create A New Analysis


When you open IMPRINT, you will create a new

analysis

Starting from scratch

Or using a library system
 Libraries are for reference or quick start
 But you are not required to use them!

Or open an existing one

The IMPRINT Library (& New User Models)

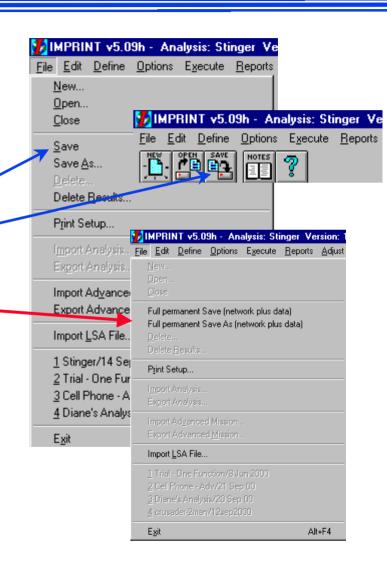
Plus new user-developed models for IMPRINT:

LW155
AAAV
Fox
Comanche
Longbow
Crusader
JBS
HMD

Mission Area	System Type	System	
Air Defense	Air Defense Mobile Gun	M163 VULC	
Air Defense	HIMAD	Patriot FP	
Air Defense	Man-port Air Defense Sys	STINGER	
Aviation	Attack Helicopter	AH-64A	
Aviation	Cargo Helicopter	CH-47D	
Aviation	Scout Helicopter	OH-58D	
Aviation	Utility Helicopter	UH-60A	
Close Combat Heavy	Cavalry Fighting Vehicle	M3 BRADLEY	
Close Combat Heavy	Tank	M1 ABRAMS	
Close Combat Light	Anti-tank Vehicle	M901 ITV	
Close Combat Light	Automatic Weapon	M249 SAW	
Close Combat Light	Grenade Launcher	M203	
Close Combat Light	Infantry Fighting Vehicle	M2 BRADLEY	
Close Combat Light	Man-port. Anti-tank Wp	DRAGON	
Close Combat Light	Man-port Indirect Fire Wp	M252 81MM	
Close Combat Light	Rifle	M16A1	
Combat Service Support	Heavy Truck	M977 HEMTT	
Combat Service Support	Light Truck	M998 HMMWV	
Fire Support	Med Range Missile Artill'y	LANCE	
Fire Support	Rocket Field Artill'y System	ket Field Artill'y System MLRS	
Fire Support	Self-propelled Howitzer	M109A2 HOW	
Fire Support	Towed Howitzer	M102 HOW	

OK

Cancel


Navigating within IMPRINT

- Windows "standards" (to the extent possible)
 - OK goes back one and saves
 - Cancel also goes back one & does not save
 - Other buttons advance
- Deeply embedded windows
 - Navigate from top > down
 - At embedded levels, also navigate sideways
- Multiple ways to access data
 - Lists, graphics, spreadsheets

Saving Your Analysis

- Save early, save often*
 *from the top-most window
- Save again as you exit
- Saving your analysis.
- Saving your network diagram & information
- When in doubt, save
- Reminders are legitimate!

Sharing Your Analysis Using Import & Export

Folders:

€ e:\

eq imprint3

🛅 demo

📄 marc 🗎 taam

e: drive e

Drives:

docume~1

e:\imprint3

◆To Import -

- Close the open analysis
- Select "Import"
- Browse until you find the one you're looking for
- To access the analysis,
 you must then open it

◆To Export -

- Close your analysis if you have one open
- Select Export option
- Create export file using Windows naming conventions
- On hard drive or on disk
- File name does not have to = analysis name

? X

Cancel

Network...

Special Case for Import & Export of Advanced Missions to Other Tools--i.e., WinCrew

Alt+F4

In IMPRINT, it's an analysis. Out of IMPRINT, it's a .imp file.

🊺 IMPRINT v3.291

Open...

Delete..

Print Setup.,

Import Analysis

Export Analysis...

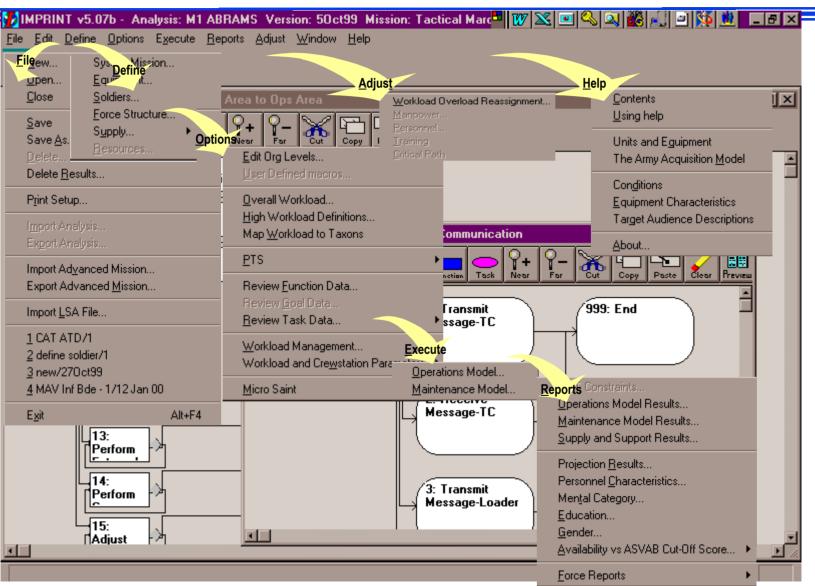
Define Options Execute Reports Adjust Window Help

mport IMPRINT Analysis.

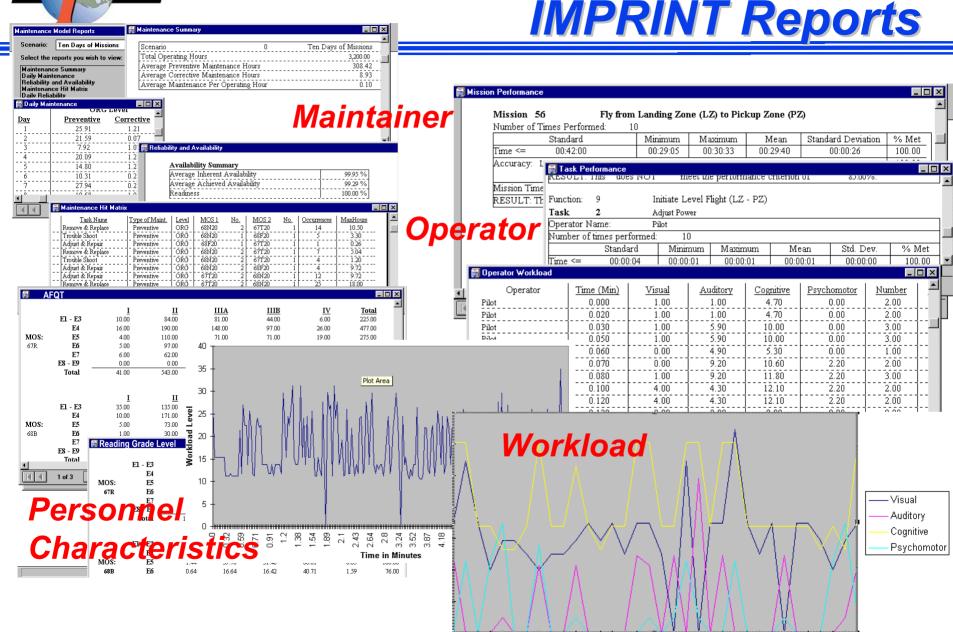
File name:

crusader.imp

crusader.imc


List files of type:

IMPRINT DBs (*.imp)


trv001.imp

IMPRINT Menus

Define Mission

Define Mission Answers...

- How long will it take to perform my tasks?
- How much workload will be created?
- What is the probability of success?
- How should tasks be allocated across crewmembers and to automation?

Define Mission Inputs

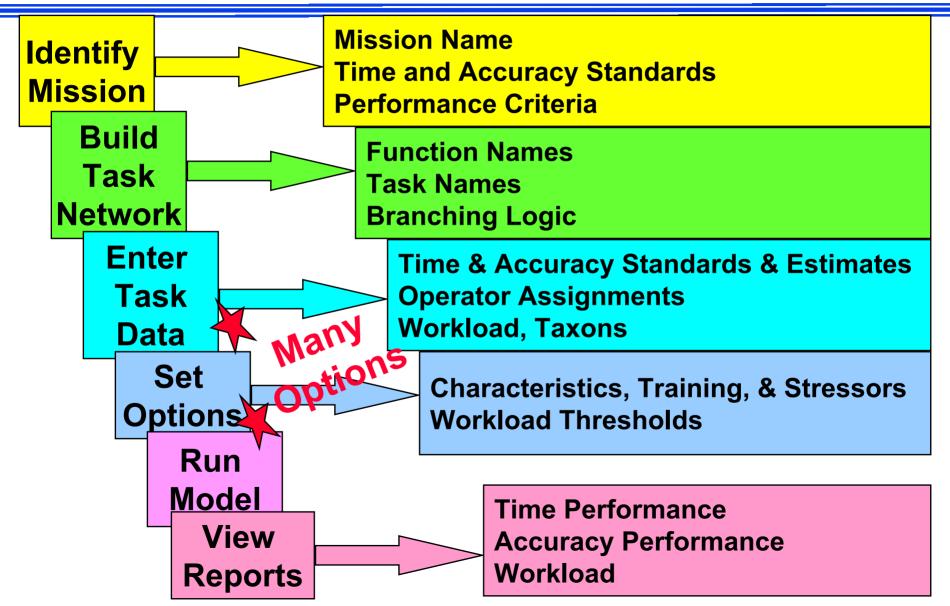
Mission level

- time standard
- time criterion
- accuracy criterion
- mission criterion

Function level

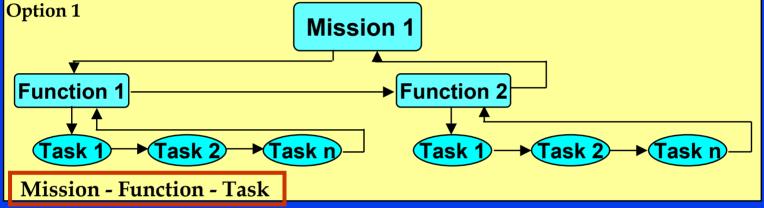
- time standard
- time criterion

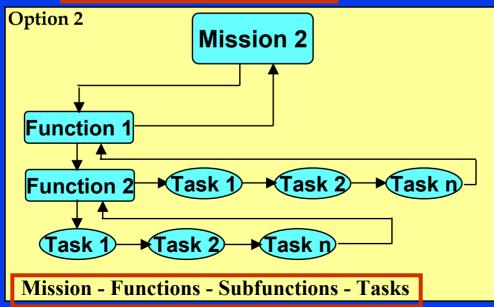
Branching logic

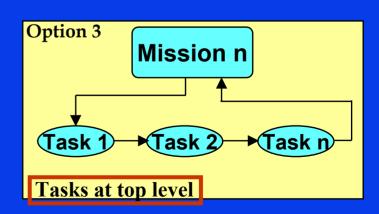

- serial
- multiple
- repeating
- probabilistic

Task level

- time standard
- accuracy standard
- criterion
- time estimate
- accuracy estimate
- consequences of failure
- workload
- taxons
- crew assignments

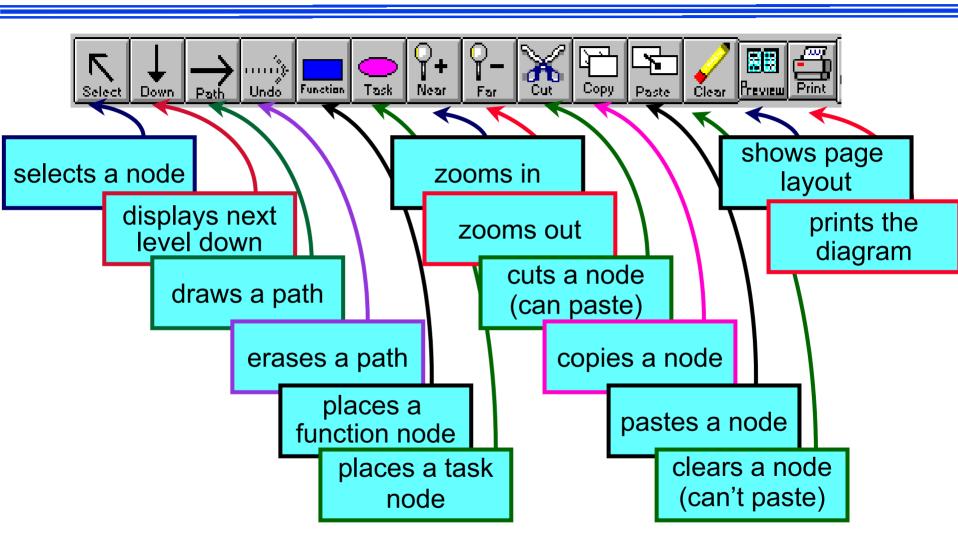

Define Mission Process





Task Network Hierarchy Options in VACP

System



- Micro Saint-based modeling tool
- Designed specifically for human operators of systems
- Evaluate system performance time and/or accuracy
- Has workload computations built-in
 - VACP or Wickens' MRT (Multiple Resource Theory)
- Has data collection built-in

Task Network Toolbar

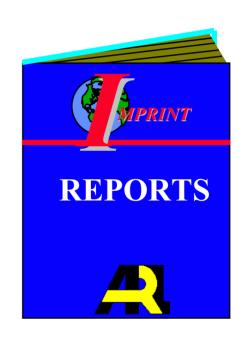
Enter Task Data

- Time
 - Standard
 - Mean & Standard Deviation
 - Micromodels
- Accuracy
 - Standard
 - Probability of Success
 - Mean & Standard Deviation
 - Consequences of Failure
- Operator assignments
- Workload
- Taxons

Assign Operators to Tasks

Primary

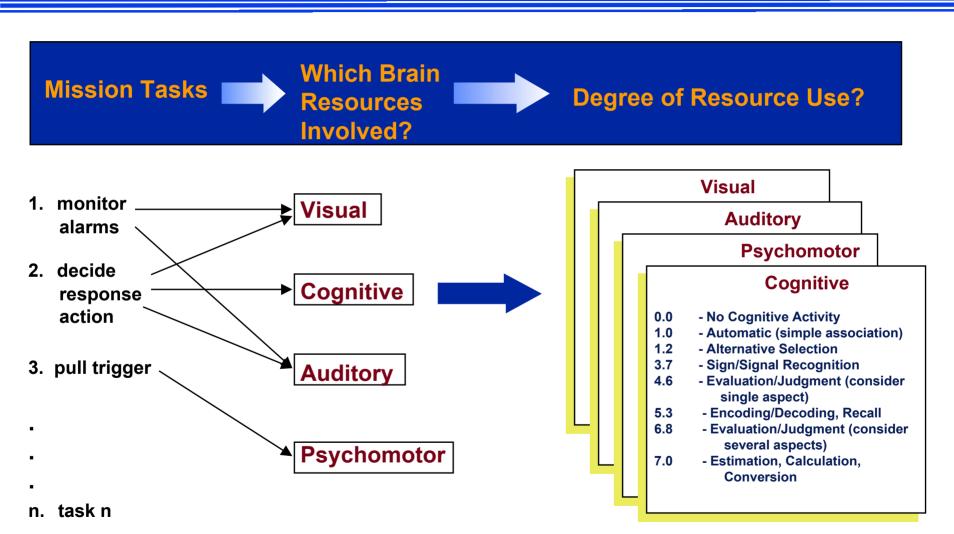
- Performs task regardless of current workload
- Secondary (Optional)
 - Has requisite skills and training
 - Used to recommend task reallocations


Run Model

Execute Operations Model			X	1	- 1	<u> </u>	Jugi
Mission: Crusader Final working co			Run Model				
Random Number Seed:	5						
✓ Animation	<mark>⊶<mark>ē Micro Saint</mark> <u>F</u>ile <u>E</u>dit <u>D</u>ispla</mark>	ay E <u>x</u> ecute <u>H</u> e	elp				_ ×
Adjustments		Up Go to	Down	Network: 0 IMF	PRINT		
Perfect Accuracy	Pointer Network Task Queue Path Undo Path Start Job Zoom In Zoom Back	O.O STAR		I Prepare for 4 Process SITREP	Execute move 3 Plan move from	11 Rejoin node 1	
		•					T D

Outputs of Define Mission

- Mission Performance
 - Predicted time & success rate
- Function Performance
 - Predicted time
- Task Performance
 - Predicted time & accuracy
- (And others you will see later)



VACP Workload Method

- Describes effort needed to perform task
- Helps identify peaks throughout the mission
- AKA "McCracken-Aldrich"
- Four independent channels
- Option to combine into "Overall" channel
- Does <u>not</u> dynamically impact performance
- "Adjust" feature helps evaluate high workload
 & reallocation of tasks to secondary operator

Mental Workload

Assign Workload

Visual

- 0.00 No Visual Activity
- 1.00 Visually Register/Detect (detect image)
- 3.70 Visually Discriminate (detect visual differences)
- 4.00 Visually Inspect/Check (static inspection)
- 5.00 Visually Locate/Align (selective orientation)
- 5.40 Visually Track/Follow (maintain orientation)
- 5.90 Visually Read (symbol)
- 7.00 Visually Scan/Search/Monitor(continuous)

Auditory

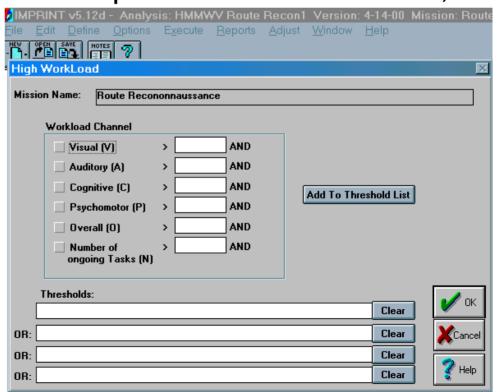
- 0.00 No Auditory Activity
- 1.00 Detect/Register Sound
- 2.00 Orient to Sound (general orientation)
- 4.20 Orient to Sound (selective orientation)
- 4.30 Verify Auditory Feedback
- 4.90 Interpret Semantic Content (speech)
- 6.60 Discriminate Sound Characteristics
- 7.00 Interpret Sound Patterns (pulse rate, etc.)

Assign Workload

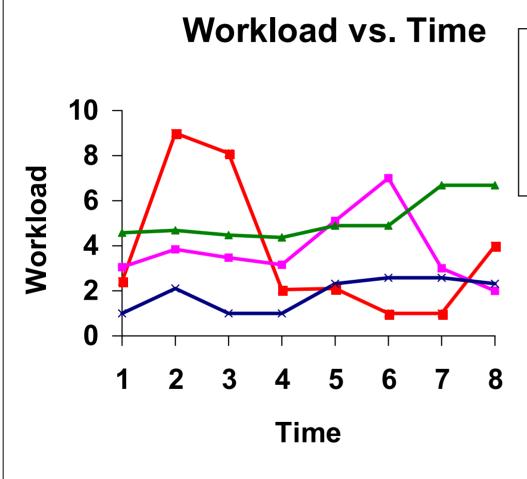
Cognitive

- 0.00 No Cognitive Activity
- 1.00 Automatic (simple association)
- 1.20 Alternative Selection
- 3.70 Sign/Signal Recognition
- 4.60 Evaluation/Judgment (consider single aspect)
- 5.30 Encoding/Decoding, Recall
- 6.80 Evaluation/Judgment (consider several aspects)
- 7.00 Estimation, Calculation, Conversion

Psychomotor


- 0.00 No Psychomotor Activity
- 1.00 Speech
- 2.20 Discrete Actuation (button, toggle, trigger)
- 2.60 Continuous Adjustive (flight or sensor control)
- 4.60 Manipulative
- 5.80 Discrete Adjustive (rotary, thumbwheel, lever)
- 6.50 Symbolic Production (writing)
- 7.00 Serial Discrete Manipulation (keyboard entries)

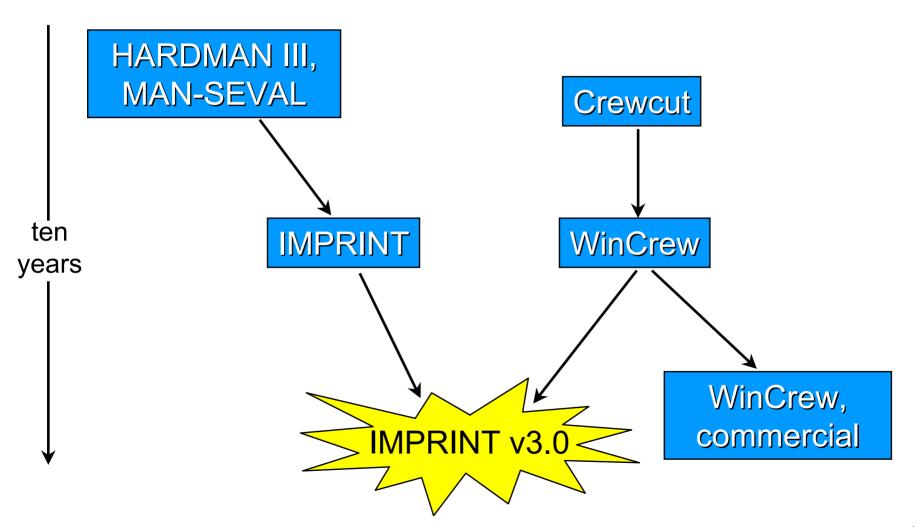
"High Workload" and Reallocation


- Under "Options," define up to 5 high workload thresholds
- When model runs, points where one or more thresholds are exceeded will be reported
- Under "Adjust," workload overload points can be reviewed,
 - and assigned to a secondary operator if desired
- Then re-run model to re-check workload

(Be sure to save your original model before reallocating)
(And remember, workload does <u>not</u> dynamically affect performance here)

Analyze Results

- **─** Visual
- Auditory
- -- Cognitive
- --- Psychomotor
 - Graphical report
 - And workload by
 - channel
 - operator
 - · & "overload"



Define Mission Advanced Workload

ARL HRED Workload Modeling Tools

IMPRINT Workload Approaches

VACP

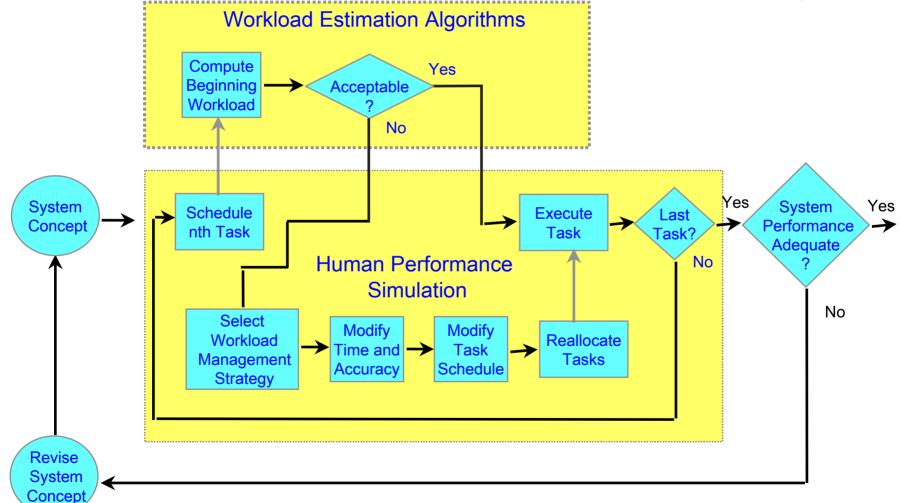
- Identify peaks thru-out mission
- AKA "McCracken-Aldrich"
- Four independent channels
- Option to combine into "Overall" channel
- Does <u>not</u> dynamically impact performance

Advanced

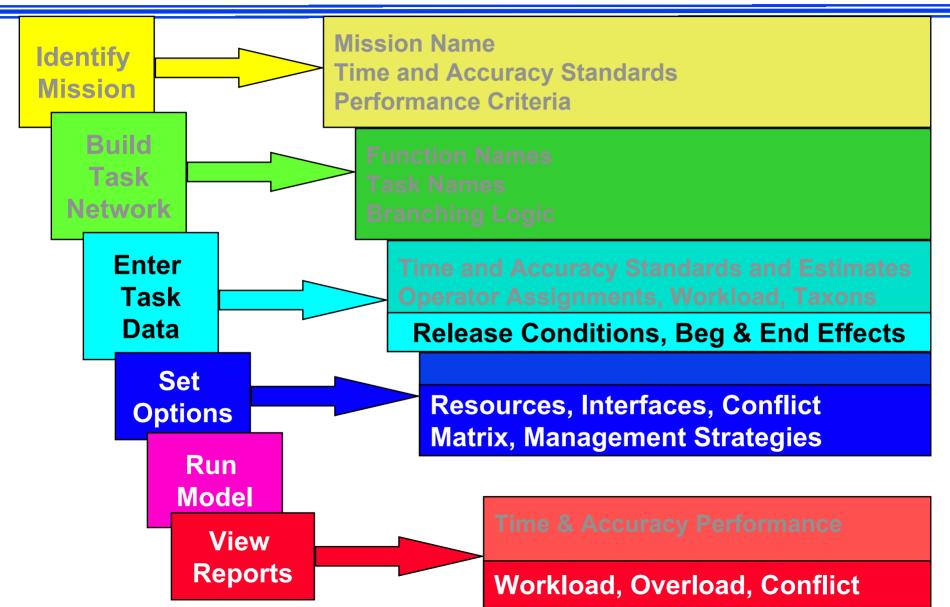
- Create > 4 resources
- Link to controls and displays
- Considers interchannel conflict
- <u>Dynamically affects</u><u>system performance</u>
 - » Task flow, allocation, performance

When to Use Advanced?

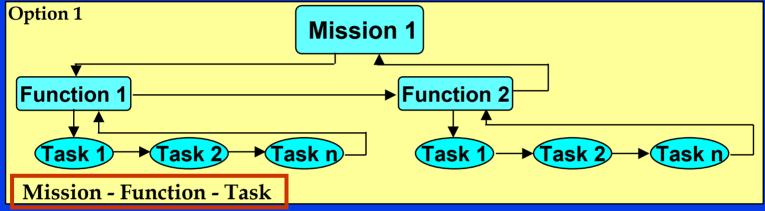
- Use VACP when...
 - Early in process
 - Identifying peaks is enough
 - Controls and interfaces are TBD
 - Need results quickly

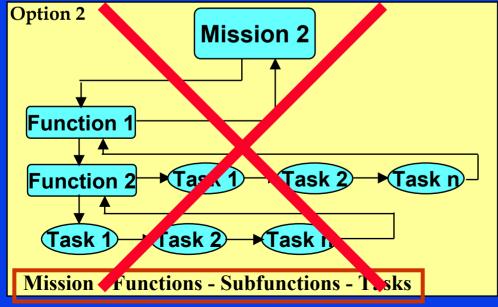

- Use Advanced when...
 - Want to examine tasks very closely
 - Care about workload management
 - Want to consider conflict
 - Workspace design has identifiable alternatives
 - Have time to spend on detailed assessment

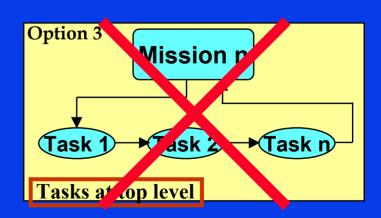
By the way, you can use your VACP network model for Advanced - & vice versa - with just a few constraints...


Advanced Workload Coping Behaviors

Interaction of Human Performance and Workload Estimation Algorithms

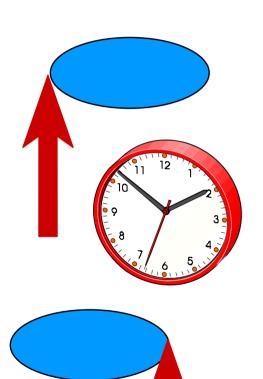

Define Mission Process - Advanced





Task Network Hierarchy Options in Advanced

System



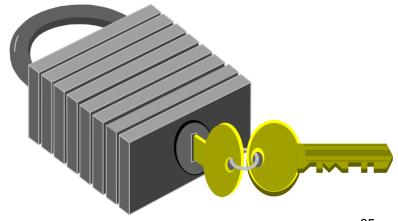
External Events

- Expressions that are inserted into model execution at selected clock times
- Can be used to cause task execution
- Used commonly to
 - Establish initial conditions of the system
 - Insert system changes (e.g., arrival rates)

Task Effects

Beginning effects

- What happens to variable values as a result of a task beginning to execute
 - e.g., resources are used, counters are incremented


Ending effects

- What happens to variable values as a result of a task completing execution
 - e.g., resources are free, counters are decremented

Release Conditions

- Allows task to execute
- Establishes rules for task execution
- Can include multiple conditions
- Typically involves logical expressions

Advanced Workload Details

- Expressions must be used to control rejoining paths
 - Placed in Release Conditions, Beginning Effects, and Ending Effects
 - Use variables
 - Have syntax rules

Advanced Workload Details

- Variables
- Mathematical and Logical Expressions
- Beginning Effects
- Ending Effects
- Release Conditions
- Data Collection

- Most variables are defined by the user to represent conditions or parameters
 - Examples
 - » Resource availability
 - » Entity status
- Variable values can affect model execution
- Variable values are data to be collected

Variable Types

- Real
- Integer
- Arrays
 - Integer or real
 - -1, 2, or 3 dimensions
 - Indexed by a variable during a simulation
 - Think of them as tables with as many columns as you need

Arrays of Variables

- Often, we will want to store the same type of parameter values many times
 - Most common example is parameters regarding entities that flow through the system such as
 - » When did it arrive
 - » What kind is it
- In this situation use arrays

System Variables

tag

- A magical variable that keeps track of the number of the entity being acted on by any event at any time
- Once you assign a value, it gets carried through
- Each entity needs to have a unique tag number
- Used primarily for referencing arrays that define attributes of entities

System Variables

clock

- The current simulation time
- Starts at zero
- No expected resemblance to "real time"

run

- When you have multiple runs of the network, this tells you which run you're in
- Can be used to change conditions across runs

Expressions

- Expressions are used to initially set or change variable values in Micro Saint & WinCrew models
 - Examples
 - » To set and change resource availability
 - » To set and change entity states
- Two general types mathematical and logical expressions

Mathematical Expressions

- Operators
 - () grouped operations
 - ^ exponentiation
 - * multiplication
 - / division
 - % remainder division
 - + addition
 - subtraction

Logical operators

```
greater than
< less than
>= greater than or equal to
<= less than or equal to
<> not equal to
   logical or
  logical and
= = equal to (e.g., if a== b then...)
: = assignment
```


Logical statements

```
if
then
else
  if a>b then time:=5 else time :=7;
while ... do
  while i < 5 do type[i] := 1, i++;</pre>
```


Adjustment operators

- += Increment by adding
- = Increment by subtracting
- / = Increment by dividing
- * = Increment by multiplying

Separators

```
end of expression
e.g., a:=1;
```

separates assignments within expressions e.g., if a<1 then b:=5, c:=6 else b:=4, c:=2;

Snapshots of Execution

- Used to collect data during a model run
- Each snapshot defines variables to be stored during execution
- Data collection can be triggered on
 - Task execution
 - Entities going into or departing from queues
 - Clock time
 - End of the run

Assign Operators to Tasks

- Characteristics
 - Automation, aptitude, experience, fatigue
- Primary (one only)
 - Performs task unless in overload
- Contingency (<=5)
 - Has requisite skills and training
 - Used to implement management strategies

Advanced Workload Management

- User-defined workload threshold values
- Management of tasks over threshold
 - A No effect
 - B New task doesn't begin
 - C New task performed in serial
 - D Drop current task
 - E Hand-off new task
 - F Hand-off old task

Advanced Workload Variables

- Used to create advanced workload strategies
- Used in if...then.. statements
 - P task priority value
 - H highest priority of ongoing tasks
 - Total workload for op if new task added
 - S this operator's workload threshold

if P>H then F

"If new task's priority is greater than ongoing task's priority, then reallocate the ongoing task to a contingency operator"

Define Resources and Interfaces

Resources

- Default set
 - Visual
 - Auditory
 - Motor
 - Speech
 - Cognitive
- Add up to 5 more

Interfaces

- Controls and displays in your design
- Don't get carried away!

Aggregate Workload

ADVANCED WORKLOAD CALCULATION:

$$W_T = W_{STD} + (W_{WCC} + W_{BCC})$$

Where:

 W_T = Instantaneous Workload at Time T

 W_{STD} = Workload attributable to the demands of all operator's tasks at time T (Single Task Demands)

W_{wcc} = Workload attributable to Within-Channel Conflicts (Within and between tasks)

W_{BCC} = Workload attributable to Between-Channel Conflicts (Between tasks only; within tasks may see improved performance "S-C-R")

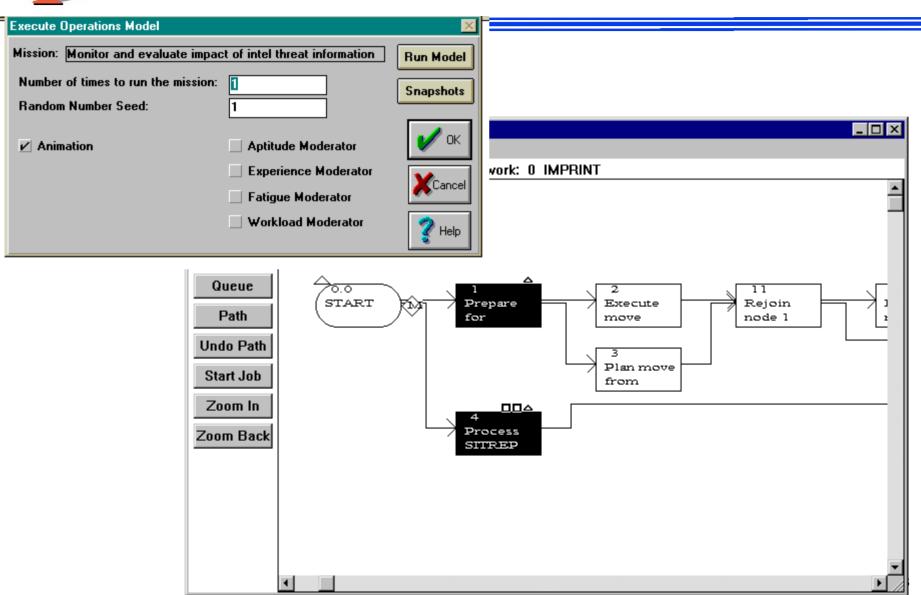
^{*} Adapted from W/Index North & Riley, 1988

Assign STD's

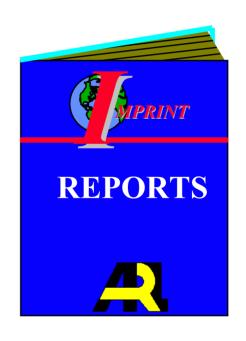
- Build RI pairs and assign to tasks
- Slight differences from VACP scales
- Modified by Chris Wickens
- Pop-up scales accessed by doubleclicking the cell

Assign Conflicts

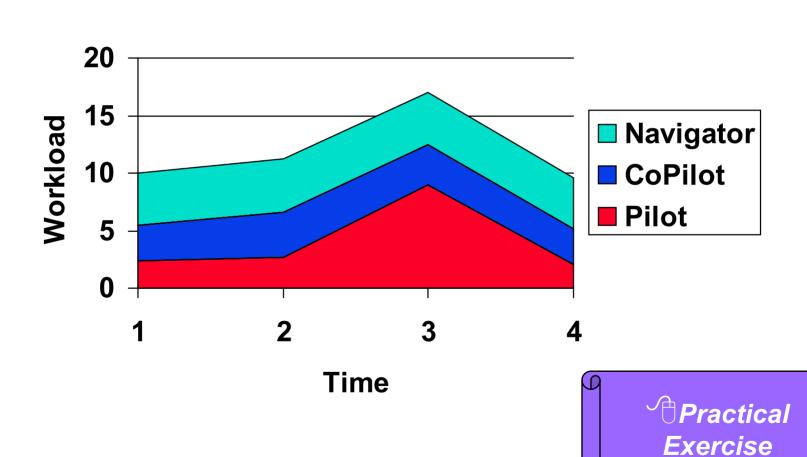
- BIG contributor to workload score
- Matrix of channels X channels, upper diagonal
- Cell values range from 0.00 -1.00
- Double click on row header provides "expert guidance" and default values

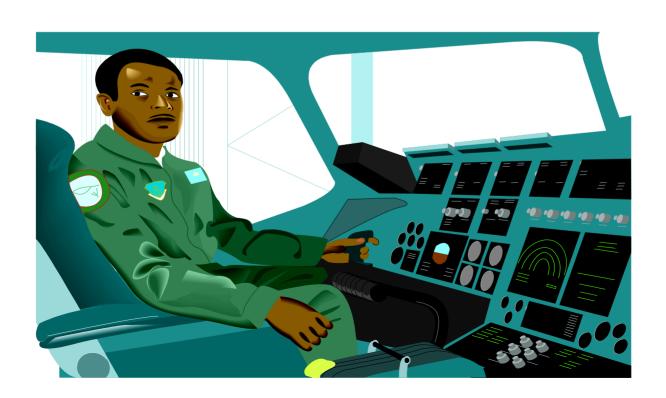

Advanced Workload Method

- Describes effort needed to perform task
- To help examine impact of workload during mission
- Results are combined across channels into one score
- Results consider inter- & intra-channel conflict
- Does dynamically impact performance


Run Advanced Model

Unique Outputs of Advanced Workload


- Critical Path
- Operator Activity
- Operator Workload
- Overload
- Channel Conflict
- Task Timeline
- CrewStationWorkload
- User Snapshot


Analyze Results

Workload vs. Time

Define Soldiers

Define Soldiers Analyses

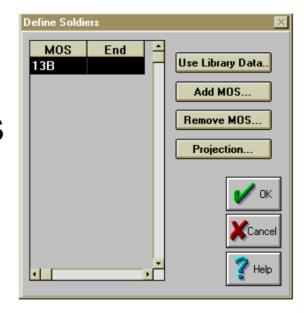
> Stand Alone

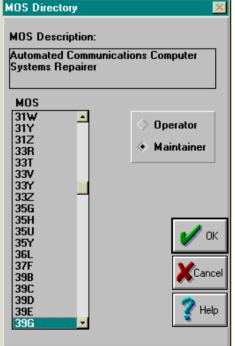
> Operators in Define Mission

Maintainers in Define Equipment

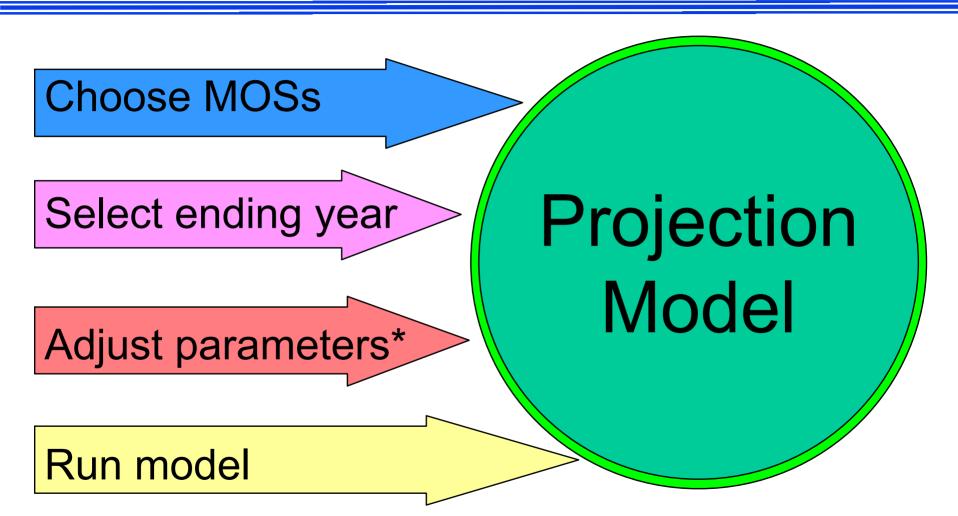
> MOSs in Define Force

Personnel Characteristics


Define Soldiers


- Add or Delete MOSs
- Run Projection Model
 - Optional, but required to look at Personnel Reports
- Adjust Projection Model Parameters
 - Optional

Add or Delete MOSs


- Operators and Maintainers
- "Dummy" MOS's (for Civilians or Contractors) & Officers
- PersonnelCharacteristicsData for MOSs

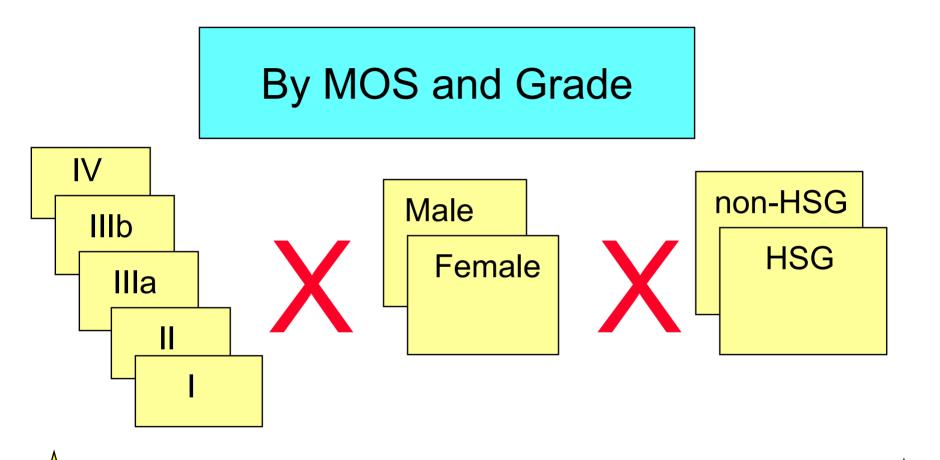
Run Projection Model

^{*} optional step

Projection Model

Historical Transition Rates Current
Subpopulation
Characteristic
Distributions

Estimated Accession Distribution


Personnel Flow Model ✓ ProjectedSubpopulationDistributions

Application of Characteristic Distributions

Projected
MOS
Characteristic
Distributions

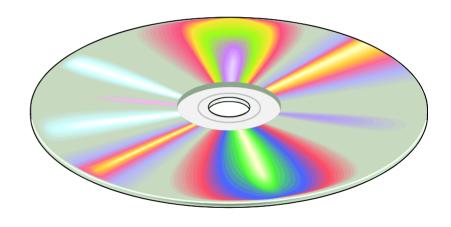
Subpopulations

Each subpopulation is flowed separately

Projection Model Data

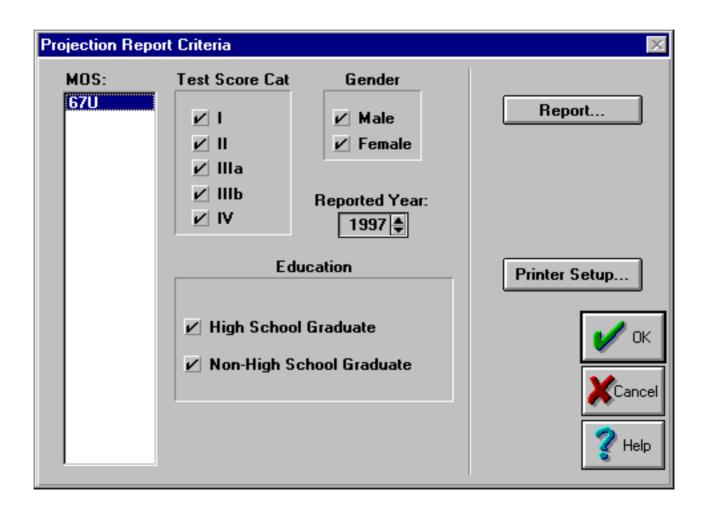
- Historical accessions
- Promotion rates
- Separation rates
- Migration in & out rates
- Current inventory

Adjust Endstrength

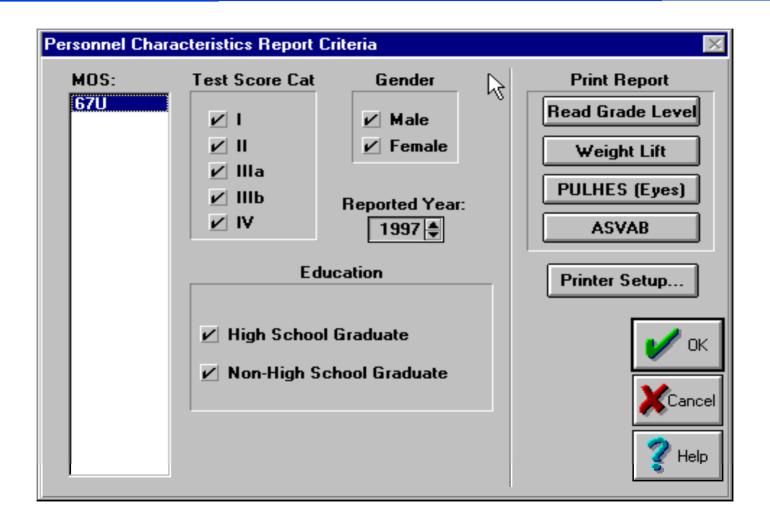

- Adjustments for "downsizing"
- "Cookie cutter" approach

Use Army Library Data

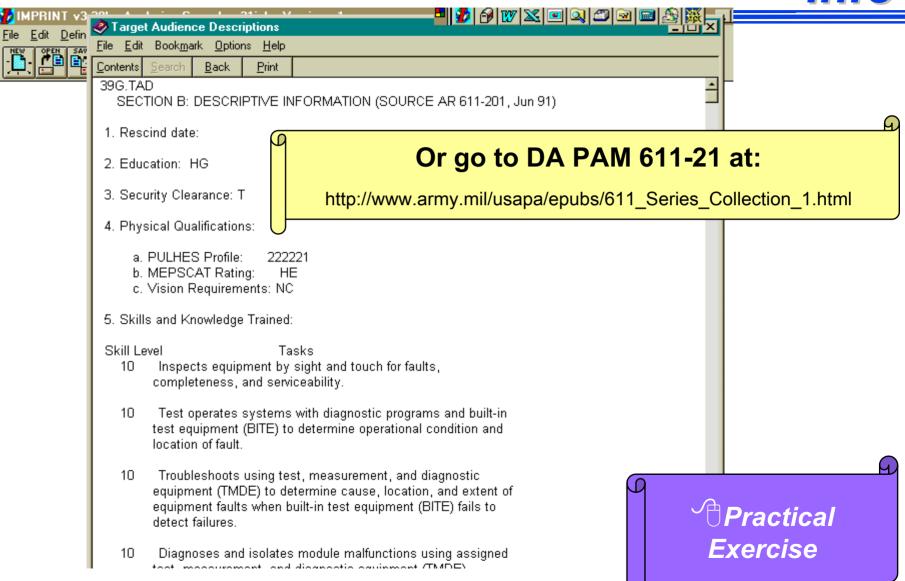
- MOS data for 22 historical systems
- Operators and maintainers
- Associated personnel characteristic data


MARC Maint. Database

Enlisted Master File

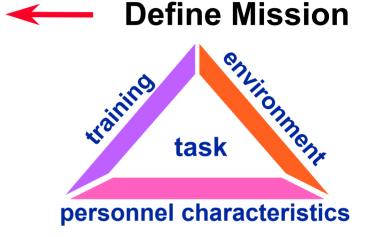


Define Soldiers Reports



Define Soldiers Reports (cont)

Target Audience Description


Stressors & Performance Shaping Functions

Modeling Human Performance

- Discrete event task networks
- Performance measures
 - Time
 - Accuracy
- Factors affecting human performance
 - Personnel characteristics
 - Sustainment training
 - Environmental stressors

Evaluate performance under different conditions

Applying PTS* Options *Personnel, Training, Stressors

- For VACP missions only
- Apply stressors by individual task
- Or for all tasks for an MOS or crew position
- Tasks must be described via "taxons"

Soldier Performance Shaping Functions

- Used Project A database ARI
 - 1985 data
 - 9,500 soldiers total
 - 9 different military occupational specialties
 - full data set on 9-MOS sample = 5,000 soldiers
 - updated in 1997 with longitudinal data

11B-Infantryman
13B-Cannon Crewman
19E-Tank Crewman
31C-Radio Teletype Op
63B-Veh & Gen. Mech Spc.
71L-Admin Spec
91A-Med Care Spec
88M-Motor Transport
Operator
95B-Military Police)

- Derived algorithms describing relationship of MOS personnel characteristics and training frequency & recency with task performance by task type
- Provided "what if" options in IMPRINT

Sustainment Training

- Characterized by frequency & recency
- Users specify frequency & recency
 Once a week or more
 - Less than twice a year
- Can be applied task-by-task or all tasks

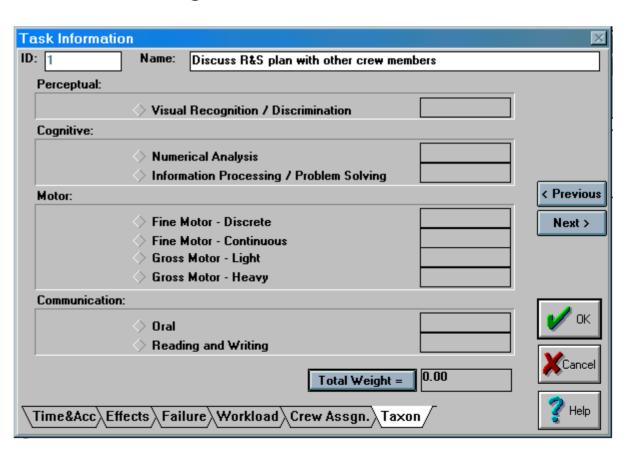
IMPRINT Stressors

- ✓ Mission-oriented protective posture gear
- ✓ Heat & humidity
- ✓ Cold & wind speed
- ✓ Noise
- ✓ Sleepless hours

When applied to tasks -

- » Less accurate task performance
- » Or increased task time
- » Or both

Not all tasks are affected in the same way or by the same stressor


- Under "Define Mission" Task Data
- Describe composition of the task
- Use to calculate impact of personnel characteristics, stressors and training
- Nine categories
- Choose <=3 and assign weightings

Can automatically convert VACP workload ratings into taxon assignments

Taxons

- Visual Recognition/Discrimination
- Numerical Analysis
- Information Processing/Problem Solving
- Fine Motor Discrete
- Fine Motor Continuous
- Gross Motor Light
- Gross Motor Heavy
- Communication Oral
- Communication Read & Write

Impact of Stressors by Task Type

Taxon	MOPP	Heat	Cold	Noise	Sleepless Hours
Visual	T	A	Т		
Numerical		A			TA
Cognitive		A			TA
Fine Motor Discrete	T	A	Т		
Fine Motor Continuous					
Gross Motor Light	T		T		
Gross Motor Heavy					
Commo. (Read & Write)		A			
Commo. (Oral)	Т	A		A	

T = affects task time, A = affects task accuracy, TA = affects both

Applying Stressors

Stressor

Measures

Heat

Temperature & Humidity

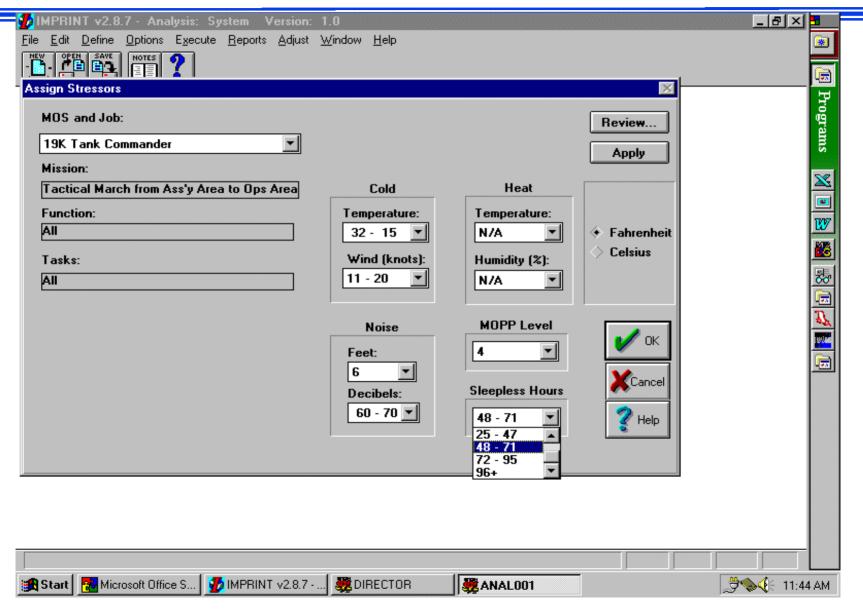
Cold

Temperature & Wind speed

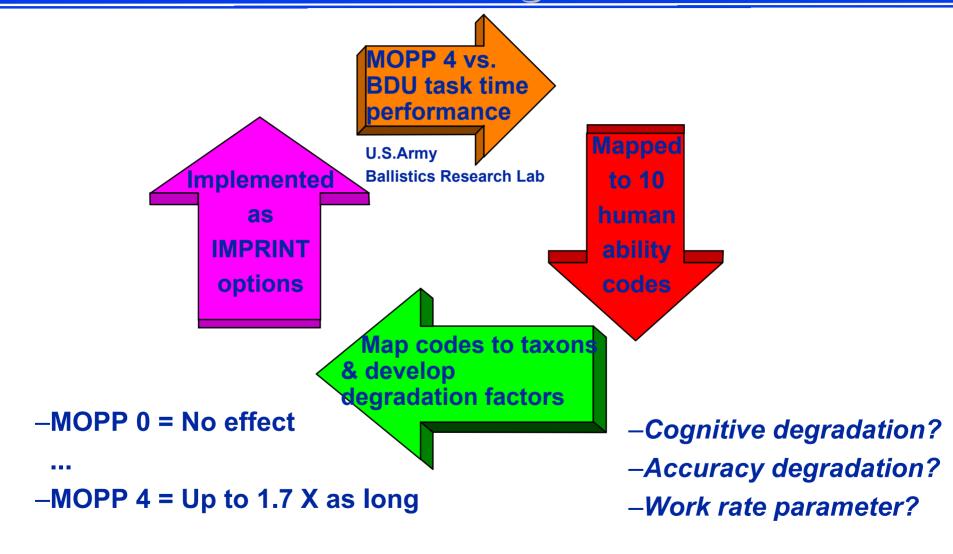
Noise

Distance & Noise level (dbs)

MOPP

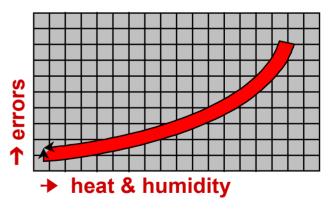

Level (0 - 4)

Sleepless Hours — Hours since last slept



Environmental Stressors Screen

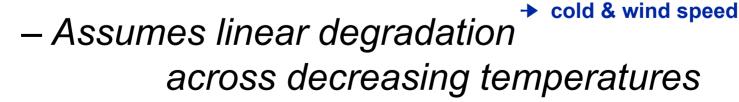
Development of MOPP Degradation Factors



Development of Heat Degradation Factors

 Heat degradation factors in IMPRINT derived from studies relating heat stress to inaccurate performance

- » Bioastronautics Data Book, 1981
- » Parker, 1973
- » MIL-HDBK-759A


– Additional parameters (work rate, clothing, etc.)?

Development of Cold Degradation Factors

- Cold degrades task time as a function of ambient temperature and wind velocity
 - Derived from Teichner (1958) relating wind chill to % performance loss
 - » One for visual reaction time & fine motor discrete
 - » Another for gross motor light

Development of Noise Degradation Factors

 Noise degrades task accuracy as a function of noise level & speaker-listener distance

Derived from Human
 Engineering Design Criteria
 MIL-STD-1472C

Need to consider communication frequency & voice level

Development of Sleepless Hours Degradation Factors

- Hours since last sleep degrades time & accuracy
 - Derived from a review of several studies
 - Cognitive performance is more sensitive to degradation than physical strength and endurance tasks
 - Decline in performance is roughly 25% for every 24 hours of operation

Stressor Update in Process...

- Hours since last sleep
 - IMPRINT too optimistic! Impact at < 24 hours
 - Does affect all taxons
- Circadian rhythm
 - Important stressor including interaction w/ sleep loss
 - Need time of day interface
- Nuclear, biological, & chemical
 - Exposure effects, type & time; need to map to IMPRINT taxons
- Vibration
 - Dimensions of vibration
- Noise
 - Does affect cognitive tasks
- Some empty cells in IMPRINT matrix are OK

Combining Stressors

Power Function

$$\mathbf{D} \mathbf{F}_{T} = \prod_{i=1,n} \sqrt[i]{\mathbf{D} \mathbf{F}_{i}}$$

Where:

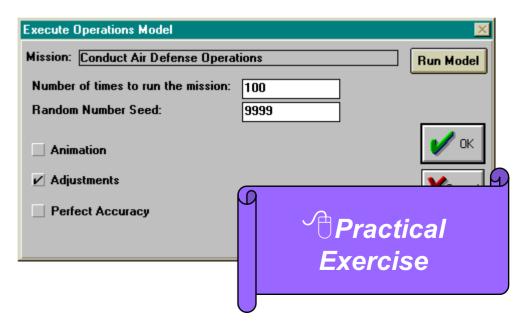
 DF_T = Total degradation factor

DF_i = The ith degradation factor when when ordered from largest to smallest

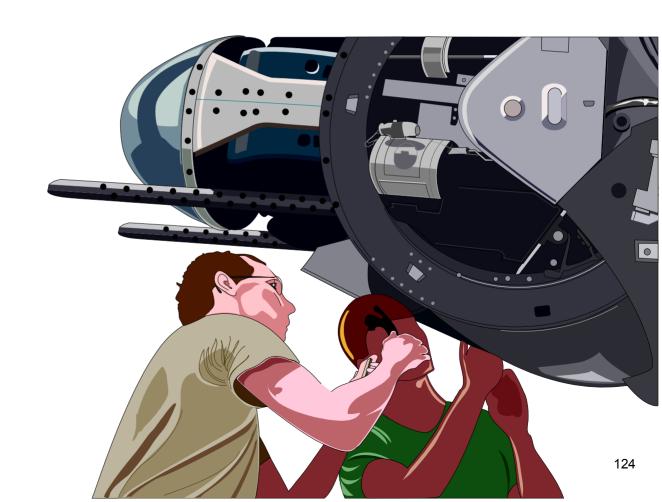
n = Number of degradation factors

Applying All PTS Options

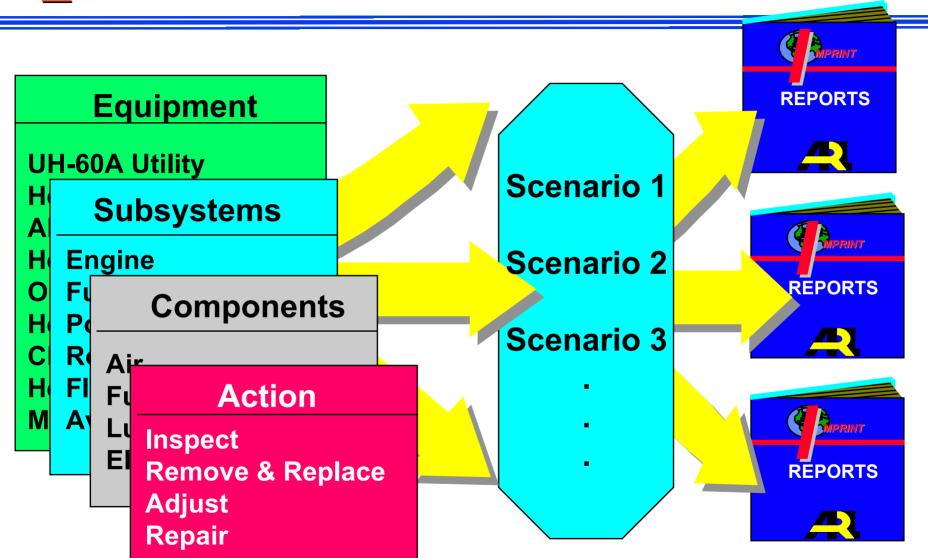
First apply Personnel Characteristics


Then apply *Training Frequency*

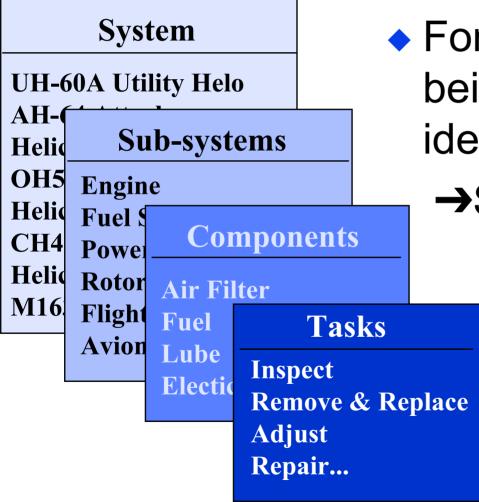
Apply Stressors last


Running the Model with PTS Options

- Run baseline model first
- Apply PT and/or S
- Review effects by task
- Re-run model with Adjustments selected
- Compare outputs with baseline



Define Equipment

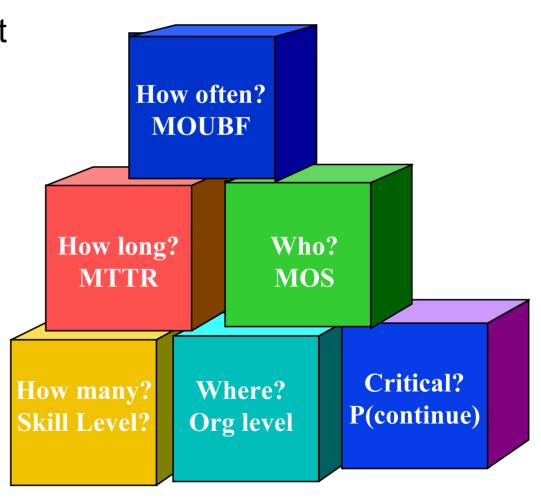


Define Equipment Process

System-to-Task Decomposition

 For the system being modeled, identify

→Sub-systems


→Components

→Tasks which are either corrective or preventive

Maintenance Task Data

- Mean operational unit between failure (i.e., maintenance actions
- Mean time to repair
- Soldier job specialty
- How many of what skill level
- Organizational level
- Mission criticality

Scenario Elements

- System Operational Profile
- Maintenance Crew
 - Number & types of people available to do the maintenance on each shift
- Travel Time
 - Amount of time to get system to the people (or people to the system) on the battlefield
- Repair Parts
 - Likelihood a part is available
 - Average wait time, if not available

Operational Profile Data Items for Every Segment

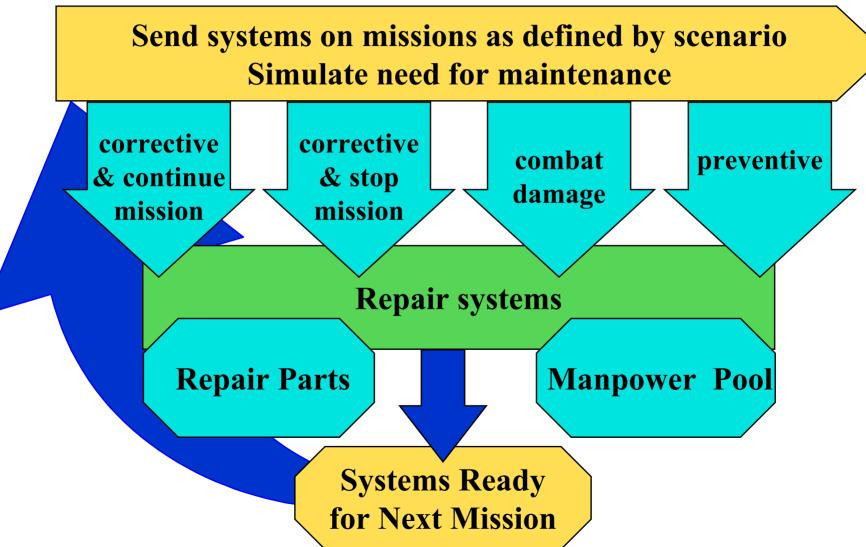
Consumables (i.e., Usage) data

Time & systemsdata

Combat data

Probability of hit Probability of kill Replacement time Distance traveled Rounds fired Load Time

Start time & day


Duration

Priority

Max and min # systems needed Number of systems per mission

Stochastic Maintenance Model

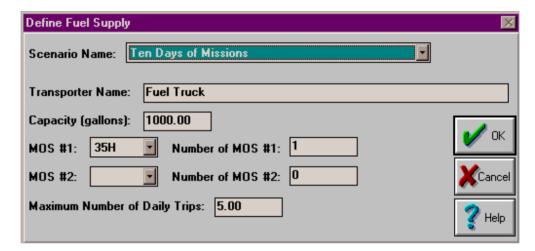
Maintenance Model Reports

Detailed & Summary Measures

- Maintenance manhours by:
 - task, component, & subsystem
 - preventive & corrective maintenance
 - organizational level
 - soldier job specialty
- REPORTS

- Achieved operational availability & readiness
- Maintenance to operational hours ratio
- High driver subsystems
- Personnel utilization
- Logistics downtime
- Combat damage
- **•** ...

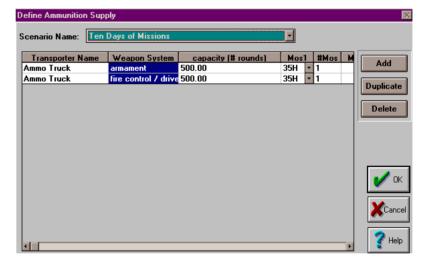
Define Supply



Define Fuel Supply

Select a scenario created under Define

Equipment


- Enter
 - Transporter name
 - Capacity of transporter in gallons
 - Manpower required
 - Maximum number of trips per day

Define Ammunition Supply

Select scenario created under Define

Equipment

- For each weapon system enter
 - Transporter name
 - Capacity of transporter in rounds
 - Manpower required
 - Maximum number of trips per day

Supply and Support Report

Supply Results

April 7, 2000

System M1 ABRAMS

Scenario 0 Ten Days of Missions

Subsystem	Transporter	Total#Trips Needed	Mosl	#Needed	Mos2	#Needed	
armament	Ammo Truck	1.55	35H	0.31		0.00	
fire control / drives	Ammo Truck	1.55	35H	0.31		0.00	
Fuel	Fuel Truck	111.60	35H	22.32		0.00	
				\square			
					Practi		
						xerci	

Define Force Structure

Define Force Structure

- Estimates of total "system driven" manpower
- Maintenance manpower based on Define Equipment
- Operator manpower based on crew size
- Development of a phasing schedule
- Adjustments for op tempo and MMHs

System-Driven Manpower

- ⇒ Operators
- ⇒ Maintainers
- ⇒ Fuel handlers
- ⇒ Transportation personnel
- ⇒ Institutional training personnel
- ⇒ Ammo handlers
- ⇒ Supply personnel

Maintenance Manpower

Specify unit type & size (e.g., tank battalion) in maintenance model

Specify number of systems in unit

Specify scenario

Run model

MAINTAINER MANPOWER

Operator Manpower

Determine crew size in define mission

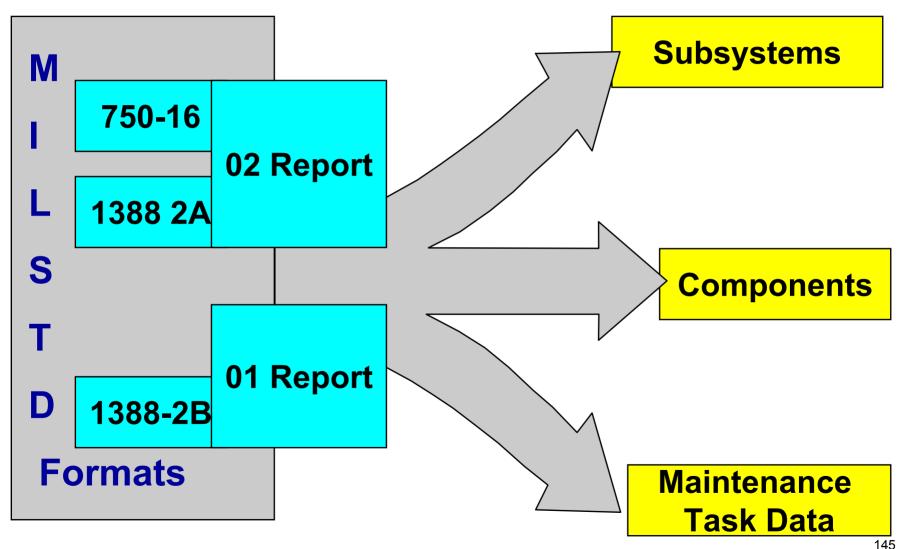
Specify crew ratio

Adjustments

- Adjust op tempo by major unit
- Adjust MMHs by maintenance level & unit

- Manpower Estimate
- Force Structure
- Manpower Requirements by Year
- Manpower Requirements by Unit

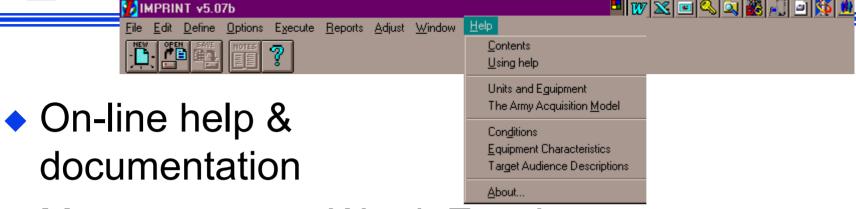
Other Features & Support...



Import and Export

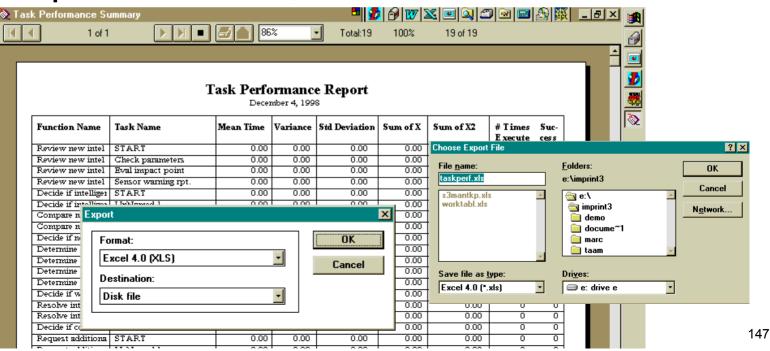
- To other IMPRINT users...
 - Use Import Analysis and Export Analysis
 - » Analysis must be closed
- To Wincrew users...
 - Use Import Advanced Mission and Export Advanced Mission
 - » Analysis must be open
- To Micro Saint users...
 - Under Options, use Micro Saint Send
 Model and Micro Saint Retrieve Results
 - » Analysis must be open

LSA Import for **Define Equipment**


Mapping Workload to Taxons

Mental Workload Ratings	Taxons	
Visual 1.0, 3.7, 4.0, 5.0, 5.4, 7.0	Visual (Pattern Recognition-Discrimination)	
Cognitive 7.0	Numerical	
Cognitive 1.0, 1.2, 3.7, 4.6, 5.3, 6.8	Information Processing	
Psychomotor 2.2, 4.6, 5.8, 7.0	Fine Motor Discrete	
Psychomotor 2.6	Fine Motor Continuous	
	Gross Motor Light	
	Gross Motor Heavy	
Auditory 4.9, 6.6, 7.0 Psychomotor 1.0	Communications (Oral)	
Visual 5.9 Psychomotor 6.5	Communications (Read & Write)	
Auditory 1.0, 2.0, 4.2, 4.3		

^{*}Note that none of the VACP workload scores map into either GML or GMH taxons because workload channels are primarily mental



More Features...

Move reports to Word, Excel,

etc.

Documentation & Analysis Support

- On-line help
- Loaded in 'imprint/documentation' directory
- Analysis Guide
 - » goal statement
 - » results

- » bounds/limits/mental model
- » data needs

- 📖 User's Manual
 - » definitions, glossary
 - » error list and types
 (e.g., msaint, Windows)
- » duplicate on-line help
- » data sources
- » taxon / stressor effects

Getting the Software

Who

- Any government agency
- Private industry with government contract
- Foreign government (case-by-case)

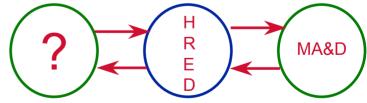
How

- Send request via e-mail or letter
- If private industry include government contract number and organization

Non-Distribution Form

- Keep track of users
- Reminder not to distribute

Software Distribution



Technical Support

ARL-HRED

- Mr. John Lockett (jlockett@arl.army.mil)
 Phone (410) 278-5875
- Ms. Celine Richer (cricher@arl. army. mil)
 Phone (410) 278-5883
- Ms. Diane Mitchell (diane@arl. army. mil)
 Phone (410) 278-5878
- Ms. Jody Wojciechowski (jqw@arl.army.mil)
 Phone (410) 278-8830
- Ms. Charneta Samms
 Phone 410-278- 5877

Maintain Database

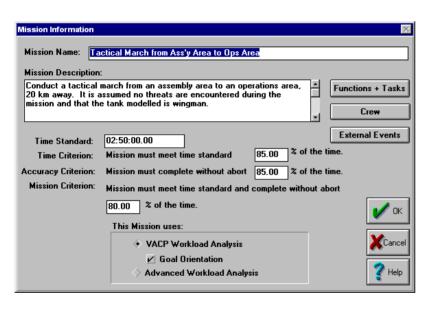
- User comments
- "Bugs"
- "Fixes"

Using the List Server

- List of current IMPRINT users & interested parties
- Send suggestions, comments, general information or questions regarding IMPRINT to

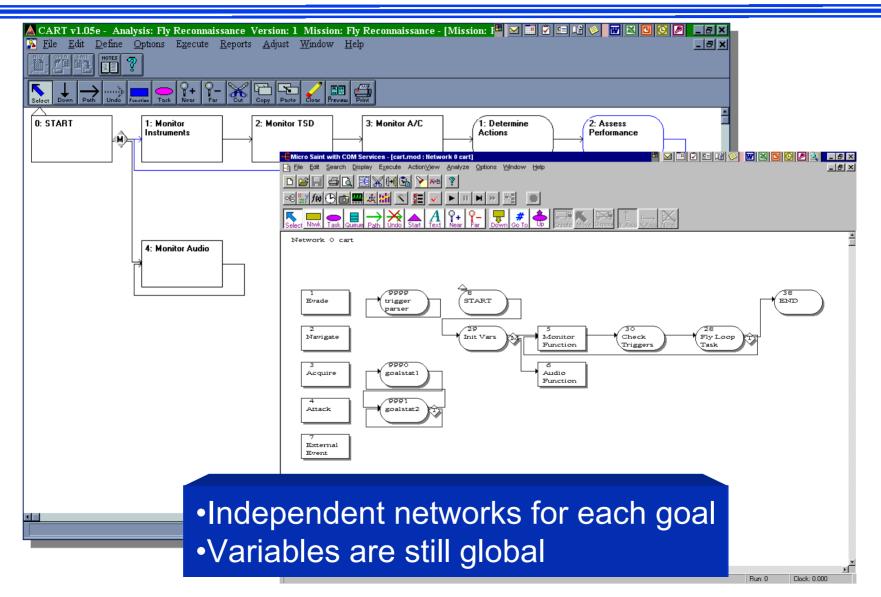
imprint@shred.arl.army.mil

Future Capabilities!



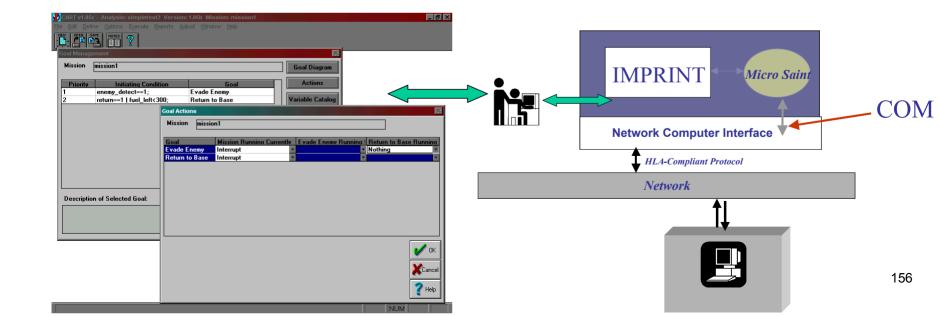
Version 6 Capabilities

- Goal orientation
 - Option from VACP
 - Beginning & Ending Effects
 - Variable Catalog
 - Macros (User-Defined Functions)
 - Snapshots
- COM capabilities
 - Including HLA Middleware
- Access to tag
- Check syntax
- Better memory management



- VACP
- Beginning/Ending
- Release Conditions
- Variable Catalog
- External Events
- Goal Functions
- Interrupts
- Advanced Fail Effects

VACP-Advanced "Mutation"
Will work on existing models BUT
multiple decisions don't automatically rejoin!


Task Network Model Development

Innovations

- Trigger identification
- Trigger communication
- Task interruption
- Task restart vs. task resume

Goal Management

×

Mission

Fly Reconnaissance

Goal Diagram

Actions

Variable Catalog

Priorit	Initiating Condition	Goal
1	threat_present==TRUE & mission_time_left < 14.5;	Evade
2 l	target_present==TRUE & evade_status == FALSE;	Attack

& evade_status == FALSE; Attack

Triggering conditions (from external simulations)

Add Goal

Cut Goal

Description of Selected Goal:

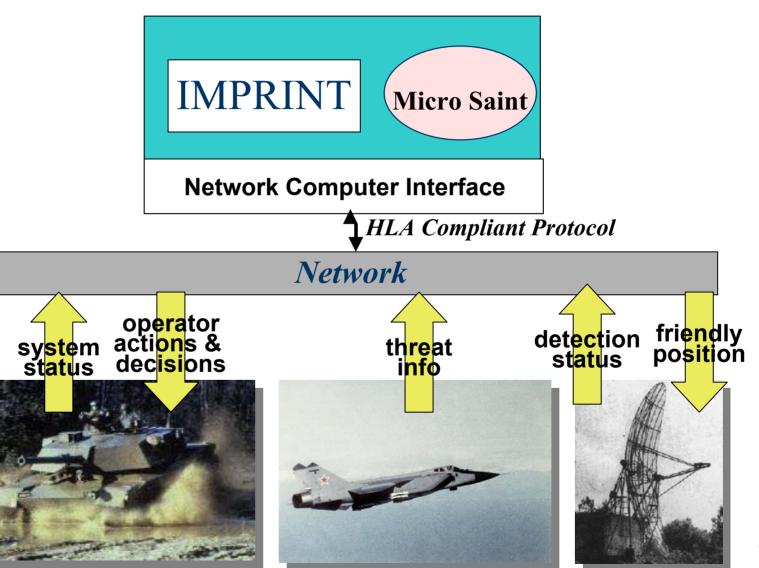
Goal Actions

Mission Fly Reconnaissance

Action matrix – to define goal interactions

Goal Rules

- When a trigger comes true:
 - Look UP the matrix to see if a higher priority goal would suspend or halt it. If so, don't start it, but keep trying. If not:
 - Look DOWN the matrix and implement the actions for all lower priority goals
- When a goal ends normally, gets halted or gets suspended:
 - Resume anything it suspended UNLESS a higher priority goal would halt it. If so, halt it. If a higher priority goal would suspend it, then suspend it.



Variables of Interest

- curgolstatus[goalid], curtskstatus[taskid]
 - 1=running, 2=suspended, 3=halted, 4=ended
- goalparent[taskid]
- action[goalid, goalid]
 - 0=nothing, 1=interrupt, 2=halt, 3=start
- mission has a goalid of 0
- task() is Micro Saint task number

System Architecture

AF Validation Success Story

- Wright Pat SIMAF Virtual Strike Warfare Environment
- Time critical targeting (SCUD Hunt) mission
- HPM vs. Eight pilots (F16 and A10)
- overall kills of ground targets in the time critical scenario was virtually the same for both the model and pilots (100% and 98%, respectively)
- HPM accounted for 61 percent of the behavior of the pilots in the simulation environment
- New tactic discovered: Coordinated use of synthetic aperture radar (SAR) and targeting infrared (TIR) imaging system

Wrap-Up Discussion & Thanks for Coming!

References

- Allender, L., Kelley, T. D., Salvi, L., Lockett, J., Headley, D. B., Promisel, D., Mitchell, D., Richer, C., and Feng, T. Verification, validation, and accreditation of a soldier-system modeling tool. <u>Proceedings of the Human Factors and Ergonomics Society 39th Annual Meeting-1995</u>, San Diego, pp. 1219-1223.
- Allender. L., McAnulty, D., and Bierbaum, C. (1992). Using simulation to support testing: Implications of a HARDMAN III application. <u>Proceedings of the 34th Annual Conference of the Military Testing Association</u>, (pp. 804-809).
- Allender, L., Salvi, L., and Promisel, D.(June 1997). Evaluation of Human Performance under Diverse Conditions via Modeling Technology.
 <u>Proceedings of Workshop on Emerging Technologies in Human Engineering Testing and Evaluation, NATO Research Study Group 24.</u> Brussels, Belgium.
- Allender, L., Kelley, T., Archer, S., and Adkins, R., (1997). IMPRINT The Transition and Further Development of a Soldier-System Analysis Tool.
 MANPRINT Quarterly, Office of the Deputy Chief of Staff of Personnel, Vol. V, No. 1.
- Dahl, S., Allender, L., and Kelley, T., (1995) Transitioning Software to the Window Environment Challenges and Innovations. <u>Proceedings of the Human Factors and Ergonomics Society 39th Annual Meeting 1995</u>, San Diego, pp. 1224-1227.
- Headley, D. B., and Archer, R., A Simulation Model to Estimate Manpower Requirements. <u>Proceedings, Third Technology Symposium 1993</u>, Orlando
- Kelley, T., and Allender, L. (1996). A process Approach to Usability Testing for IMPRINT. <u>Army Research Laboratory Report ARL-TR-1171</u>
- McMahon, R., Spencer, M., and Thornton, A. (1995). A quick response approach to assessing the operation performance of the XM93E1 NBCRS through the use of modeling and validation testing. Presented at the Military Operations Research Society Symposium.
- Mitchell, D. K. (2000). Mental workload and ARL workload modeling tools (ARL-TN-161) Aberdeen Proving Ground, MD: Army Research Laboratory.